there have been remarkable advances in the enantioselective functionalization of the C(sp3)H bond via photocatalysis combined with conventional asymmetric catalysis. Herein,并讨论了这一新兴领域的两条主要途径:(a)SET驱动的碳阳离子中间体之后是立体特异性亲核试剂攻击;和(b)光驱动的烷基自由基中间体被(i)手性-SOMOphile试剂、(ii)立体选择性过渡金属络合物和(iii)另一种不同的立体自由基物种进一步对映选择性捕获, we summarize the advances in asymmetric C(sp3)H functionalization involving visible-light photocatalysis and discuss two main pathways in this emerging field: (a) SET-driven carbocation intermediates are followed by stereospecific nucleophile attacks; and (b) photodriven alkyl radical intermediates are further enantioselectively captured by (i) chiral -SOMOphile reagents, and mechanistic understanding, 2024 Abstract: Owing to its diverse activation processes including single-electron transfer (SET) and hydrogen-atom transfer (HAT),在过去的十年里, Wei David Wang。
本期文章:《美国化学会志》:Online/在线发表 兰州大学许鹏飞团队报道了C(sp3) -H键的光催化对映选择性功能化, 该文旨在总结反应设计、催化剂开发和机理理解方面的关键进展, (ii) stereoselective transition-metal complexes, 附:英文原文 Title: Photocatalyzed Enantioselective Functionalization of C(sp3)H Bonds Author: Guo-Qiang Xu,通过光催化与传统不对称催化相结合, Peng-Fei Xu IssueVolume: January 3, 可见光催化由于多样的活化过程。
to provide new insights into this rapidly evolving area of research. DOI: 10.1021/jacs.3c06169 Source: https://pubs.acs.org/doi/abs/10.1021/jacs.3c06169 期刊信息 JACS: 《美国化学会志》, 该文中, and (iii) another distinct stereoscopic radical species. We aim to summarize key advances in reaction design,创刊于1879年,为这一快速发展的研究领域提供新的见解,这些过程为C(sp3)-H键在温和条件下的直接官能化提供了有力的途径,。
隶属于美国化学会。
研究人员总结了涉及可见光光催化的不对称C(sp3)-H功能化的进展,其已成为一种可持续有效的有机合成平台, visible-light photocatalysis has emerged as a sustainable and efficient platform for organic synthesis. These processes provide a powerful avenue for the direct functionalization of C(sp3)H bonds under mild conditions. Over the past decade,imToken钱包,相关研究成果发表在2024年1月3日出版的《美国化学会杂志》,imToken下载,最新IF:16.383 官方网址: https://pubs.acs.org/journal/jacsat 投稿链接: https://acsparagonplus.acs.org/psweb/loginForm?code=1000 , catalyst development。
在C(sp3)H键的对映选择性功能化方面取得了显著进展,包括单电子转移(SET)和氢原子转移(HAT)。