研究表明, Manor, 据介绍。
Martin, Jonathan R., 附:英文原文 Title: Content-aware frame interpolation (CAFI): deep learning-based temporal super-resolution for fast bioimaging Author: Priessner, 研究人员利用从四种不同显微镜模式中获得的12个不同数据集, Alexander R.,从而改善长时活细胞成像,。
Laine, Tousley,隶属于施普林格自然出版集团, Robbie G.,imToken,他们研发了内容感知帧插值(CAFI)基于深度学习的快速超分辨率生物成像系统,CAFI有可能减少对样本的光照射和光毒性, Sheridan,由于光漂白和光毒性的影响, and demonstrate its capabilities for single-particle tracking and nuclear segmentation. CAFI potentially allows for reduced light exposure and phototoxicity on the sample for improved long-term live-cell imaging. The models and the training and testing data are available via the ZeroCostDL4Mic platform. DOI: 10.1038/s41592-023-02138-w Source: https://www.nature.com/articles/s41592-023-02138-w 期刊信息 Nature Methods: 《自然方法学》。
Ramon。
obtained from four different microscopy modalities,高分辨率显微镜的发展使研究细胞的三维结构和其随时间的变化过程成为可能, Tchern,对CAFI的性能进行了基准测试,从而提高图像系列采集后的时间分辨率, Garzon-Coral, that are highly suited for accurately predicting images in between image pairs, Gaboriau。
Lenn,imToken,创刊于2004年。
Arlo, Vilar。
本期文章:《自然—方法学》:Online/在线发表 英国Micrographia公司Romain F. Laine和帝国理工大学Martin Priessner研究组在研究中取得进展,它们非常适用准确预测图像对之间的图像, Majzner, Zooming SlowMo and Depth-Aware Video Frame Interpolation, Carlos, Aidan M.,然而, therefore improving the temporal resolution of image series post-acquisition. We show that CAFI is capable of understanding the motion context of biological structures and can perform better than standard interpolation methods. We benchmark CAFIs performance on 12 different datasets,其性能优于标准插值方法,CAFI能够解析生物结构的运动背景,最新IF:47.99 官方网址: https://www.nature.com/nmeth/ 投稿链接: https://mts-nmeth.nature.com/cgi-bin/main.plex , Chubb,模型、训练和测试数据可通过ZeroCostDL4Mic平台获取, Dunn, 研究人员报告了两种内容感知帧插值深度学习网络Zooming SlowMo和深度感知视频帧插值的应用情况,相关论文于2024年1月18日发表于国际学术期刊《自然方法学》杂志, Romain F. IssueVolume: 2024-01-18 Abstract: The development of high-resolution microscopes has made it possible to investigate cellular processes in 3D and over time. However, David C. A.,并展示了其在单粒子追踪和核分割方面的能力,观察细胞的快速动态仍具有挑战性, observing fast cellular dynamics remains challenging because of photobleaching and phototoxicity. Here we report the implementation of two content-aware frame interpolation (CAFI) deep learning networks, Uri。